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Abstract Escherichia coli has four [NiFe]-hydrogenases
(Hyd); three of these, Hyd-1, Hyd-2 and Hyd-3 have been
characterized well. In this study the requirement for the F0F1-
ATP synthase for the activities of the hydrogen-oxidizing
hydrogenases Hyd-1 and Hyd-2 was examined. During
fermentative growth on glucose at pH 7.5 an E. coli F0F1-
ATP synthase mutant (DK8) lacked hydrogenase activity. At
pH 5.5 hydrogenase activity was only 20% that of the wild
type. Using in-gel activity staining, it could be demonstrated
that both Hyd-1 and Hyd-2 were essentially inactive at these
pHs, indicating that the residual activity at pH 5.5 was due to
the hydrogen-evolving Hyd-3 enzyme. During fermentative
growth in the presence of glycerol, hydrogenase activity in
the mutant was highest at pH 7.5 attaining a value of 0.76 U/
mg, or ~50% of wild type activity, and Hyd-2 was only
partially active at this pH, while Hyd-1 was inactive.
Essentially no hydrogenase activity was measured at pH
5.5 during growth with glycerol. At this pH the mutant had a
hydrogenase activity that was maximally only ~10% of wild
type activity with either carbon substrate but a weak activity
of both Hyd-1 and Hyd-2 could be detected. Taken
together, these results demonstrate for the first time that
the activity of the hydrogen-oxidizing hydrogenases in
E. coli depends on an active F0F1-ATP synthase during
growth at high and low pH.
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Introduction

Escherichia coli F0F1-ATP synthase is well known as the
main membrane protein complex of bioenergetic relevance.
The complex catalyzes ATP synthesis, the terminal step in
oxidative phosphorylation. During fermentative growth, in
the absence of aerobic or anaerobic respiration and
oxidative phosphorylation, F0F1 functions as an ATP-
driven proton pump to generate the proton motive force
(ΔμH

+). During fermentation of sugars (glucose) this
complex catalyzes ATP hydrolysis and H+ movement
associated with solute secondary transporters, especially
the constitutive low affinity K+ uptake TrkA system
(Trchounian 2004; Kirakosyan et al. 2008). In addition, an
interaction of the F0F1-ATP synthase with the low-affinity
K+ uptake system has been proposed for Enterococcus
hirae (Trchounian and Kobayashi 1998). Little is known,
however, regarding the role that the F0F1-ATP synthase
might play in the function of anaerobic oxidation-reduction
reactions such as hydrogen oxidation and evolution, for
example by the formate hydrogenlyase pathway.

The formate hydrogenlyase complex is induced under
fermentative growth when enterobacteria such as E. coli
grow in the absence of exogenous electron acceptors
(Rossmann et al. 1991). The complex is formed by the
selenocysteine-and molybdenum-cofactor-containing for-
mate dehydrogenase H and the [NiFe]-hydrogenase 3
(Hyd-3), and is responsible for disproportionation of
formate to carbon dioxide and H2 (Sawers et al. 1985).
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This pathway is active at low pH and high formate
concentration (Rossmann et al. 1991; Mnatsakanyan et al.
2004) and it is thought to provide a detoxification/
deacidification system countering the build up of formate
during fermentation. In addition to Hyd-3, which is
encoded by the hyc operon (Sauter et al. 1992), there is
[NiFe]-hydrogenase 4 (Hyd-4) encoded by the hyf operon
which closely resembles Hyd-3. This system has been
proposed by Andrews et al. (1997), along with the formate
dehydrogenase H, to form a second energy-conserving
formate hydrogenlyase complex. Hydrogen production
appears to be ATP-dependent and it is increased when the
NADH/NAD+ ratio is high (Trchounian et al. 1997), for
example during fermentation (De Graef et al. 1999).

Under certain conditions at neutral and slightly alkaline
pH hydrogen evolution by E. coli is completely blocked by
N,N′-dicyclohexylcarbodiimide (DCCD) (Bagramyan and
Martirosov 1989; Bagramyan et al. 2002), which inhibits
the F0F1-ATP synthase activity. Moreover, mutations in the
atp operon encoding the catalytic subunits of the F0F1-ATP
synthase lowered H2 production (Trchounian et al. 1997;
Mnatsakanyan et al. 2002). This confirms a role of F0F1 or
ΔμH

+ in hydrogen metabolism. An independent study has
also revealed a relationship between the F0F1-ATP synthase
and the formate hydrogenlyase complex during thiosulfate
reduction by Salmonella typhimurium (Sasahara et al.
1997). The activity of thiosulfate reductase and formate
hydrogenlyase under anaerobic conditions was blocked by
DCCD in the wild type and almost completely absent in atp
mutants with non-functional F0F1-ATP synthase. A key role
of the F0F1-ATP synthase in the H+ movement accompa-
nying certain anaerobic oxidation-reduction reactions has
also been proposed and similar results have been observed
for hydrogen production by Rhodobacter sphaeroides
(Gabrielyan and Trchounian 2009) and recently for the
archaeon Thermococcus onnurineus, which generates a
ΔμH

+ driven by formate disproportionation via a formate
hydrogenlyase complex (Kim et al. 2010).

As well as the hydrogen-evolving formate hydrogenlyase
complex, E. coli possesses two other [NiFe]-hydrogenases,
Hyd-1 and Hyd-2, which are hydrogen-oxidizing enzymes
(Ballantine and Boxer 1985; Menon et al. 1991; King and
Przybyla 1999; Richard et al. 1999). Synthesis of Hyd-1,
encoded by the hya operon, is induced under anaerobic
conditions at acidic pH (King and Przybyla 1999) and by the
presence of formate but not nitrate (Laurinavichene et al.
2002). Although the precise physiological role of Hyd-1 is
unclear, the enzyme is oxygen-stable and it catalyzes only
hydrogen oxidation (Redwood et al. 2008; Lukey et al.
2010). Thus, it has likely an energy-conserving function.
Hyd-2 is maximally synthesized and active in more alkaline
medium (King and Przybyla 1999); this is in agreement with
the reported pH optimum of the purified enzyme (Ballantine

and Boxer 1985). Moreover, Hyd-2 activity was observed
under more reducing conditions (Lukey et al. 2010) and is
absent during aerobic growth (Redwood et al. 2008). Like
Hyd-1, Hyd-2 has been proposed to have an energy-
conserving function (Ballantine and Boxer 1985; Sawers
et al. 1985).

Recently, it has been reported that glycerol can be
metabolized by E. coli during fermentative growth with
peptone (Dharmadi et al. 2006; Gonzalez et al. 2008; Hu
and Wood 2010). As it has also been shown that mutations
leading to defective Hyd-1 and Hyd-2 activity cause
changes in the F0F1-ATP synthase activity dependent on
pH (Blbulyan et al. 2011) it is therefore important to
establish the effects of glycerol metabolism on hydrogen
oxidation by Hyd-1 and Hyd-2 in E. coli.

In the present study the effects on Hyd-1 and Hyd-2
activity in a mutant lacking F0F1-ATP synthase after growth
during glucose and glycerol fermentation were analyzed.
The findings are consistent with a requirement for the F0F1-
ATP synthase for hydrogen-oxidizing enzyme function,
supporting a key role for both Hyd-1 and Hyd-2 in ΔμH

+

generation.

Materials and methods

Bacterial strains, their growth and preparation of cell
extracts

The E. coli BW25113 (laclq rrnBT14ΔlacZW116 hsdR514
ΔaraBADAH33 Δrha BADLD78) wild type, JW0955 (ΔhyaB)
(Trchounian and Trchounian 2009), MW1000 (ΔhyaB
ΔhybC) (Trchounian et al. 2011) and DK8 (bglR thil1 rel1
Δ(uncB-uncC) ilv::Tn10) (Klionsky et al. 1984) mutant
strains were supplied by Prof. T.K. Wood (Texas A&M
University, College Station, USA) and Dr. N. Mnatsakan-
yan (Texas Tech University, Lubbock, USA) and were used
in this study.

Bacteria were grown under anaerobic conditions in
peptone medium (20 g/l peptone, 15 g/1 K2HPO4,
1.08 g/l KH2PO4, 10 g/l NaCl, at the indicated pH)
supplemented with glycerol (10 g/l) or glucose (2 g/l) with
incubation at 37 0C for 20–22 h (Bagramyan et al. 2002;
Mnatsakanyan et al. 2002; Trchounian and Trchounian 2009).

For the preparation of crude extracts, all steps were
carried out at 4 °C unless specifically stated otherwise.
Harvested cells were washed in anaerobic MOPS-buffer
(50 mM MOPS pH 7.5) and after centrifugation the cell
pellet was suspended in 3 volumes of 50 mM MOPS pH
7.5 buffer including 5 μg DNase/ml and 0.2 mM phenyl-
methylsulfonyl fluoride. Typically 1–2 g wet weight of cells
were disrupted by sonication (30 W power for 5 min with
0.5 s pulses). Unbroken cells and cell debris were removed
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by centrifugation for 30 min at 50,000 x g and at 4 °C and
the supernatant (crude extract) was either used immediately
or stored at −80 °C until used.

Determination of total hydrogenase enzyme activity,
non-denaturing polyacrylamide gel electrophoresis
and in-gel hydrogenase activity staining

Hydrogenase enzyme activity (H2-dependent reduction of
benzyl viologen, BV) was measured according to (Ballantine
and Boxer 1985) except that the buffer used was 50 mM
MOPS, pH 7.0. The wavelength used was 578 nm and an
EM value of 8,600 M−1 cm−1 was assumed for reduced BV.
One unit of activity corresponded to the reduction of 1 μmol
of hydrogen per min. Non-denaturing polyacrylamide gel
electrophoresis (PAGE) was performed using 7.5% (w/v)
polyacrylamide gels, pH 8.5 and included 0.1% (w/v) Triton
X-100 in the gels (Ballantine and Boxer 1985). Samples
(50 μg of protein) were incubated with 5% (w/v) Triton X-
100 prior to application to the gels. The detergent had no
adverse effects on Hyd-1 and Hyd-2 enzyme activity.
Hydrogenase activity-staining was done as described in
(Ballantine and Boxer 1985) except that the buffer used
was 50 mM MOPS pH 7.0. Each gel was incubated in an
atmosphere of 95% nitrogen: 5% hydrogen for 8 h by which
time the activity staining had run to completion.

Other methods

Protein concentration of crude extracts was determined by
the method of Lowry et al. (1951) with bovine serum
albumin as standard. Experiments were performed mini-
mally three times and each time in triplicate. Enzyme
activity is presented as standard deviation of the mean and
is highly reproducible with generally not more than 5%
deviation.

Results and discussion

F0F1-ATP synthase is important for hydrogenase activity
during glucose fermentation in E. coli

Initially, the hydrogenase enzyme activity in the mutant
DK8, which is unable to synthesize the F0F1-ATP synthase,
was determined during glucose fermentation and in
response to the pH of the culture medium. Previous studies
have shown that the E. coli F0F1-ATPase has the highest
activity at alkaline pH (pH>7.0) (Bagramyan et al. 2002).
Upon glucose fermentation at pH 7.5 no hydrogenase
enzyme activity in DK8 could be measured while a high
hydrogenase enzyme activity was measured in the wild type
(Fig. 1a). The activities of Hyd-1 and Hyd-2 can be

visualized after non-denaturing PAGE (Ballantine and
Boxer 1985). Analysis of Hyd-1 and Hyd-2 enzyme activity
by in-gel staining after non-denaturing PAGE revealed
there were no activity bands corresponding to Hyd-1 or
Hyd-2 in extracts derived from strain DK8 (Fig. 2a), which
corroborated the findings of the enzyme assays. A
hydrogenase-independent activity migrating near the top
of the gel (marked by an asterisk in Fig. 2) and which was
shown recently to be due to formate dehydrogenases N and
O (Soboh et al. 2011), was unaffected by the atp mutation,
and this activity acted as a loading control in further
experiments.

Growth of DK8 in culture medium with pH 6.5 resulted in
a hydrogenase activity of 0.15 U/mg while after growth with
glucose at pH 5.5, a hydrogenase activity of 0.19 U/mg was
determined. The wild type grown under the same conditions

Fig. 1 Hydrogenase activity of E. coli BW25113 wild type and DK8
atp mutant strains grown and assayed at different pH on peptone
medium supplemented with glucose (a) or glycerol (b)
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had activities of 2.05 and 0.82 U/mg, respectively (Fig. 1a).
These data indicate an inverse correlation between medium
pH and hydrogenase activity in the DK8 mutant (Fig. 1a). In
the in-gel hydrogenase activity assay, very weak activity
bands corresponding to Hyd-1 and Hyd-2 were observed
only after growth at pH 6.5 in DK8, while the wild type
showed strong activity bands, particularly for Hyd-1
(Fig. 2b). After growth of DK8 at pH 5.5 activity of Hyd-2
could not be observed and that of Hyd-1 was barely
detectable, indicating that the activity of both hydrogen-
oxidizing enzymes was severely affected in the F0F1-ATPase
mutant, particularly at extremes of pH (Fig. 2c). As a control,
a mutant lacking the large subunits of both Hyd-1 and Hyd-2
(MW1000) failed to reveal any activity band (Fig. 2c).
Notably, the in-gel staining data indicated that the weak
hydrogenase-independent enzyme activity due to formate
dehydrogenase, and designated by an asterisk, was observed
under all growth conditions with equal intensity in the wild
type and the F0F1-ATP synthase mutant. This indicates that
the effects observed in DK8 grown on glucose at pH 5.5 did
not affect all oxidoreductases and that the residual hydrog-
enase activity in the mutant was contributed by Hyd-3: due
to the labile nature of its activity Hyd-3 cannot be observed

in the gel-based assay (Sawers et al. 1985). These findings
are also in accord with the strong inhibitory effect of DCCD
on the activity of the third formate dehydrogenase H and H2

production by E. coli at pH 7.5 (Trchounian et al. 1997;
Bagramyan et al. 2002; Mnatsakanyan et al. 2004;
Trchounian et al. 2011). This effect could be due either
to the lack of F0F1-ATP synthase directly or may be
mediated by a deficient ΔμH

+ (Trchounian 2004;
Kirakosyan et al. 2008).

Hyd-activity is absent in an F0F1-ATP synthase deficient
mutant during glycerol fermentation at low pH

During fermentation of peptone in the presence of glycerol
it was observed that the H+ efflux and F0F1-ATPase activity
were lower than during glucose fermentation, but the F0F1-
ATP synthase activity was highest at pH 5.5 (Blbulyan et
al. 2011). However, a double mutant lacking both Hyd-1
and Hyd-2 had elevated F0F1-ATP synthase activity at pH
7.5 but not at pH 5.5 (Blbulyan et al. 2011). These results
have been interpreted to indicate that the activity of the
hydrogen-oxidizing Hyd-1 and Hyd-2 has a strong influ-
ence on the activity of F0F1-ATP synthase. During glycerol

Fig. 2 Analysis of active Hyd-1 and Hyd-2 in E. coli by activity
staining after non-denaturing-PAGE. Extracts derived from the strains
indicated were separated by non-denaturing PAGE and subsequently
stained for hydrogenase enzyme activity as described in the Materials
and Methods. Strains were grown either with glucose (a, b, c) or
glycerol (d, e, f) as indicated and at pH 7.5 (a, d), pH 6.5 (b, e) or pH
5.5 (c, f). Equivalent amounts of Triton X-100-treated crude extract
(50 μg of protein) were applied to each lane. The activity bands

corresponding to Hyd-1 and Hyd-2 are indicated as is the slowly
migrating activity band (designated by an asterisk) that corresponds to
a hydrogenase-independent activity of formate dehydrogenases N and
O (Soboh et al. 2011) and which acted as a loading control. The band
labeled 2′ represents a faster migrating degradation product of Hyd-2
(Ballantine and Boxer 1985) as demonstrated by the fact that it was
also observed in a mutant unable to synthesize Hyd-1 (see middle lane
in panel D)
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fermentation at pH 7.5, the mutant DK8 had a lower
hydrogenase-activity (by 50%) than the wild type (Fig. 1b).
In-gel activity staining revealed that this activity was
mainly due to Hyd-2 but not Hyd-1 (Fig. 2d). Under these
conditions the activity of Hyd-3 is usually absent.

After growth of the wild type at pH 6.5 the total
hydrogenase activity was similar to that during glucose
fermentation and the mutant had a value of approximately
only 10% of the activity in wild type extracts (Fig. 1b). The
in-gel assay demonstrated that both Hyd-2 and Hyd-1 were
active under these conditions (Fig. 2e). Growth of the wild
type at pH 5.5 with glycerol resulted in a hydrogenase
specific activity of~1.5 U/mg (Fig. 1b). In contrast, the
hydrogenase activity of DK8 was barely detectable (Fig. 1b).
In-gel activity-staining revealed that neither Hyd-1 nor Hyd-2
activity could be detected (Fig. 2f). Notably, however, the
slowly migrating hydrogenase-independent activity of for-
mate dehydrogenases N and O observed in these gels was
still visible in the mutant, indicating that the effect of the atp
mutation on Hyd-1 and Hyd-2 activities was specific. The
data suggest that the requirement for the F0F1-ATP synthase
activity for hydrogenase enzyme activity is the result of
altered respiratory enzyme activity in E. coli in response to
impaired oxidative phosphoryation (Noda et al. 2006).

Conclusions

The results with the E. coli F0F1-ATP synthase-negative
mutant point to a requirement for active F0F1-ATP synthase
for the activity of the hydrogen-oxidizing enzymes Hyd-1
and Hyd-2 during glucose and glycerol fermentation.
Moreover, the data obtained indicate that there is an inverse
correlation between hydrogenase activity and pH during
fermentative growth on glucose and a direct correlation
between hydrogenase activity and pH during glycerol
fermentation. While both enzymes retain low activity
during growth at pH 6.5 in the atp mutant, both are inactive
at more extreme pH. These data demonstrate a metabolic
link between the F0F1-ATP synthase activity and hydrogen-
oxidizing activity and underscore the key role of Hyd-1 and
Hyd-2 in energy conservation in fermenting E. coli cells.
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